Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology (Hardcover, 1st ed. 2017)


In his PhD dissertation Martin Bo Nielsen performs observational studies of rotation in stars like the Sun. The interior rotation in stars is thought to be one of the driving mechanisms of stellar magnetic activity, but until now this mechanism was unconstrained by observational data. NASA's Kepler space mission provides high-precision observations of Sun-like stars which allow rotation to be inferred using two independent methods: asteroseismology measures the rotation of the stellar interior, while the brightness variability caused by features on the stellar surface trace the rotation of its outermost layers. By combining these two techniques Martin Bo Nielsen was able to place upper limits on the variation of rotation with depth in five Sun-like stars. These results suggest that the interior of other Sun-like stars also rotate in much the same way as our own Sun.

R3,004

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles30040
Mobicred@R282pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

In his PhD dissertation Martin Bo Nielsen performs observational studies of rotation in stars like the Sun. The interior rotation in stars is thought to be one of the driving mechanisms of stellar magnetic activity, but until now this mechanism was unconstrained by observational data. NASA's Kepler space mission provides high-precision observations of Sun-like stars which allow rotation to be inferred using two independent methods: asteroseismology measures the rotation of the stellar interior, while the brightness variability caused by features on the stellar surface trace the rotation of its outermost layers. By combining these two techniques Martin Bo Nielsen was able to place upper limits on the variation of rotation with depth in five Sun-like stars. These results suggest that the interior of other Sun-like stars also rotate in much the same way as our own Sun.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer International Publishing AG

Country of origin

Switzerland

Series

Springer Theses

Release date

February 2017

Availability

Expected to ship within 10 - 15 working days

First published

2017

Authors

Dimensions

235 x 155 x 8mm (L x W x T)

Format

Hardcover

Pages

101

Edition

1st ed. 2017

ISBN-13

978-3-319-50988-4

Barcode

9783319509884

Categories

LSN

3-319-50988-8



Trending On Loot