Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry (Paperback, 2011 ed.)

, ,

The theory of random dynamical systems originated from stochastic
differential equations. It is intended to provide a framework and
techniques to describe and analyze the evolution of dynamical
systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen s formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many
properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs.Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets."


R1,396

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles13960
Mobicred@R131pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

The theory of random dynamical systems originated from stochastic
differential equations. It is intended to provide a framework and
techniques to describe and analyze the evolution of dynamical
systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen s formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many
properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs.Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets."

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag

Country of origin

Germany

Series

Lecture Notes in Mathematics, 2036

Release date

October 2011

Availability

Expected to ship within 10 - 15 working days

First published

2011

Authors

, ,

Dimensions

235 x 155 x 10mm (L x W x T)

Format

Paperback

Pages

112

Edition

2011 ed.

ISBN-13

978-3-642-23649-5

Barcode

9783642236495

Categories

LSN

3-642-23649-9



Trending On Loot