Electric-Field Control of Magnetization and Electronic Transport in Ferromagnetic/Ferroelectric Heterostructures (Hardcover, 2014 ed.)


This book mainly focuses on the investigation of the electric-field control of magnetism and spin-dependent transportation based on a Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) multiferroic heterostructure. Methods of characterization and analysis of the multiferroic properties with in situ electric fields are induced to detect the direct magnetoelectric (ME) coupling. A switchable and non-volatile electric field control of magnetization in CoFeB/PMN-PT(001) structures is observed at room temperature, and the mechanism of direct coupling between the ferroelectric domain and ferromagnetic film due to the combined action of 109 Degrees ferroelastic domain switching in PMN-PT and the absence of magnetocrystalline anisotropy in CoFeB is demonstrated. Moreover, the electric-field control of giant magnetoresistance is achieved in a CoFeB-based spin valve deposited on top of (011) oriented PMN-PT, which offers an avenue for implementing electric-writing and magnetic-reading random access memory at room temperature. Readers will learn the basic properties of multiferroic materials, many useful techniques related to characterizing multiferroics and the interesting ME effect in CoFeB/PMN-PT structures, which is significant for applications.

R3,413

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles34130
Mobicred@R320pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days



Product Description

This book mainly focuses on the investigation of the electric-field control of magnetism and spin-dependent transportation based on a Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) multiferroic heterostructure. Methods of characterization and analysis of the multiferroic properties with in situ electric fields are induced to detect the direct magnetoelectric (ME) coupling. A switchable and non-volatile electric field control of magnetization in CoFeB/PMN-PT(001) structures is observed at room temperature, and the mechanism of direct coupling between the ferroelectric domain and ferromagnetic film due to the combined action of 109 Degrees ferroelastic domain switching in PMN-PT and the absence of magnetocrystalline anisotropy in CoFeB is demonstrated. Moreover, the electric-field control of giant magnetoresistance is achieved in a CoFeB-based spin valve deposited on top of (011) oriented PMN-PT, which offers an avenue for implementing electric-writing and magnetic-reading random access memory at room temperature. Readers will learn the basic properties of multiferroic materials, many useful techniques related to characterizing multiferroics and the interesting ME effect in CoFeB/PMN-PT structures, which is significant for applications.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag

Country of origin

Germany

Series

Springer Theses

Release date

April 2014

Availability

Expected to ship within 12 - 17 working days

First published

2014

Authors

Dimensions

235 x 155 x 15mm (L x W x T)

Format

Hardcover

Pages

130

Edition

2014 ed.

ISBN-13

978-3-642-54838-3

Barcode

9783642548383

Categories

LSN

3-642-54838-5



Trending On Loot