Feynman's Thesis - A New Approach To Quantum Theory (Paperback)


Richard Feynman's never previously published doctoral thesis formed the heart of much of his brilliant and profound work in theoretical physics. Entitled "The Principle of Least Action in Quantum Mechanics," its original motive was to quantize the classical action-at-a-distance electrodynamics. Because that theory adopted an overall space-time viewpoint, the classical Hamiltonian approach used in the conventional formulations of quantum theory could not be used, so Feynman turned to the Lagrangian function and the principle of least action as his points of departure. The result was the path integral approach, which satisfied - and transcended - its original motivation, and has enjoyed great success in renormalized quantum field theory, including the derivation of the ubiquitous Feynman diagrams for elementary particles. Path integrals have many other applications, including atomic, molecular, and nuclear scattering, statistical mechanics, quantum liquids and solids, Brownian motion, and noise theory. It also sheds new light on fundamental issues like the interpretation of quantum theory because of its new overall space-time viewpoint. The present volume includes Feynman's Princeton thesis, the related review article "Space-Time Approach to Non-Relativistic Quantum Mechanics" Reviews of Modern Physics 20 (1948), 367-387], Paul Dirac's seminal paper "The Lagrangian in Quantum Mechanics'' Physikalische Zeitschrift der Sowjetunion, Band 3, Heft 1 (1933)], and an introduction by Laurie M Brown.

R383

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles3830
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Richard Feynman's never previously published doctoral thesis formed the heart of much of his brilliant and profound work in theoretical physics. Entitled "The Principle of Least Action in Quantum Mechanics," its original motive was to quantize the classical action-at-a-distance electrodynamics. Because that theory adopted an overall space-time viewpoint, the classical Hamiltonian approach used in the conventional formulations of quantum theory could not be used, so Feynman turned to the Lagrangian function and the principle of least action as his points of departure. The result was the path integral approach, which satisfied - and transcended - its original motivation, and has enjoyed great success in renormalized quantum field theory, including the derivation of the ubiquitous Feynman diagrams for elementary particles. Path integrals have many other applications, including atomic, molecular, and nuclear scattering, statistical mechanics, quantum liquids and solids, Brownian motion, and noise theory. It also sheds new light on fundamental issues like the interpretation of quantum theory because of its new overall space-time viewpoint. The present volume includes Feynman's Princeton thesis, the related review article "Space-Time Approach to Non-Relativistic Quantum Mechanics" Reviews of Modern Physics 20 (1948), 367-387], Paul Dirac's seminal paper "The Lagrangian in Quantum Mechanics'' Physikalische Zeitschrift der Sowjetunion, Band 3, Heft 1 (1933)], and an introduction by Laurie M Brown.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

World Scientific Publishing Co Pte Ltd

Country of origin

Singapore

Release date

August 2005

Availability

Expected to ship within 12 - 17 working days

First published

August 2005

Authors

Dimensions

229 x 153 x 10mm (L x W x T)

Format

Paperback

Pages

144

ISBN-13

978-981-256-380-4

Barcode

9789812563804

Categories

LSN

981-256-380-6



Trending On Loot