Integral Theorems for Functions and Differential Forms in C(m) (Paperback)

, ,
The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more and more paradoxical differences between the structures of the two theories.

The authors of this Research Note were driven by the quest to construct a theory in several complex variables that has the same structure as the one-variable theory. That is, they sought a reproducing kernel for the whole class that is universal and from same class. Integral Theorems for Functions and Differential Forms in Cm documents their success. Their highly original approach allowed them to obtain new results and refine some well-known results from the classical theory of several complex variables. The 'hyperholomorphic" theory they developed proved to be a kind of direct sum of function theories for two Dirac-type operators of Clifford analysis considered in the same domain.

In addition to new results and methods, this work presents a first-look at a brand new setting, based upon the natural language of differential forms, for complex analysis. Integral Theorems for Functions and Differential Forms in Cm reveals a deep link between the fields of several complex variables theory and Clifford analysis. It will have a strong influence on researchers in both areas, and undoubtedly will change the general viewpoint on the methods and ideas of several complex variables theory.

R5,324

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles53240
Mobicred@R499pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more and more paradoxical differences between the structures of the two theories.

The authors of this Research Note were driven by the quest to construct a theory in several complex variables that has the same structure as the one-variable theory. That is, they sought a reproducing kernel for the whole class that is universal and from same class. Integral Theorems for Functions and Differential Forms in Cm documents their success. Their highly original approach allowed them to obtain new results and refine some well-known results from the classical theory of several complex variables. The 'hyperholomorphic" theory they developed proved to be a kind of direct sum of function theories for two Dirac-type operators of Clifford analysis considered in the same domain.

In addition to new results and methods, this work presents a first-look at a brand new setting, based upon the natural language of differential forms, for complex analysis. Integral Theorems for Functions and Differential Forms in Cm reveals a deep link between the fields of several complex variables theory and Clifford analysis. It will have a strong influence on researchers in both areas, and undoubtedly will change the general viewpoint on the methods and ideas of several complex variables theory.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Chapman & Hall/CRC

Country of origin

United States

Series

Chapman & Hall/CRC Research Notes in Mathematics Series

Release date

August 2001

Availability

Expected to ship within 12 - 17 working days

First published

2001

Authors

, ,

Dimensions

234 x 156 x 13mm (L x W x T)

Format

Paperback

Pages

214

ISBN-13

978-1-58488-246-6

Barcode

9781584882466

Categories

LSN

1-58488-246-8



Trending On Loot