Kinetic Theory of Granular Gases (Paperback)

,
Kinetic Theory of Granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics - a theory which has mainly evolved over the last decade. The book is aimed at readers from the advanced undergraduate level upwards and leads on to the present state of research. Throughout, special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity-dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the velocity distribution function, followed by the investigation of self-diffusion and Brownian motion. Using hydrodynamical methods, transport processes and self-organized structure formation are studied.
An appendix gives a brief introduction to event-driven molecular dynamics. A second appendix describes a novel mathematical technique for derivation of kinetic properties, which allows for the application of computer algebra. The text is self-contained, requiring no mathematical or physical knowledge beyond that of standard physics undergraduate level. The material is adequate for a one-semester course and contains chapter summaries as well as exercises with detailed solutions. The molecular dynamics and computer-algebra programs can be downloaded from a companion web page.

R1,743

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles17430
Mobicred@R163pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Kinetic Theory of Granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics - a theory which has mainly evolved over the last decade. The book is aimed at readers from the advanced undergraduate level upwards and leads on to the present state of research. Throughout, special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity-dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the velocity distribution function, followed by the investigation of self-diffusion and Brownian motion. Using hydrodynamical methods, transport processes and self-organized structure formation are studied.
An appendix gives a brief introduction to event-driven molecular dynamics. A second appendix describes a novel mathematical technique for derivation of kinetic properties, which allows for the application of computer algebra. The text is self-contained, requiring no mathematical or physical knowledge beyond that of standard physics undergraduate level. The material is adequate for a one-semester course and contains chapter summaries as well as exercises with detailed solutions. The molecular dynamics and computer-algebra programs can be downloaded from a companion web page.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Oxford UniversityPress

Country of origin

United Kingdom

Series

Oxford Graduate Texts

Release date

November 2010

Availability

Expected to ship within 12 - 17 working days

First published

December 2010

Authors

,

Dimensions

234 x 158 x 19mm (L x W x T)

Format

Paperback

Pages

344

ISBN-13

978-0-19-958813-8

Barcode

9780199588138

Categories

LSN

0-19-958813-9



Trending On Loot