Mathematical Theory of Incompressible Nonviscous Fluids (Paperback, Softcover reprint of the original 1st ed. 1994)

,
Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {:: oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics."

R4,558

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles45580
Mobicred@R427pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {:: oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics."

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag New York

Country of origin

United States

Series

Applied Mathematical Sciences, 96

Release date

September 2011

Availability

Expected to ship within 10 - 15 working days

First published

1994

Authors

,

Dimensions

235 x 155 x 20mm (L x W x T)

Format

Paperback

Pages

284

Edition

Softcover reprint of the original 1st ed. 1994

ISBN-13

978-1-4612-8722-3

Barcode

9781461287223

Categories

LSN

1-4612-8722-7



Trending On Loot