Mechanical Blood Trauma in Circulatory-Assist Devices (Hardcover)

,
Mechanical cardiovascular assist devices must be properly designed to avoid damage to the blood they contact. The factors that affect the hemocompatibility of a cardiovascular assist device include three major non-physiological components - the material, fluid flow paths, and flow related stresses, - as well as the device interaction with the native vasculature. Furthermore, the interaction of the device with the blood is not static. Foreign surfaces activate blood components including platelets, leukocytes and the coagulation cascade. Thrombus formation on the surface of the device can alter the fluid dynamics in a manner that causes erythrocyte damage ranging from significant hemolysis to sub-lethal trauma that can take many days to weeks to develop into a significant clinical problem. This sub-lethal blood trauma is not easily detectable without special equipment, which is typically unavailable in routine clinical practice. Surveillance for blood damage is often sub-optimal in the clinical setting, but once clinically relevant hemolysis occurs, crucial decisions - device removal, replacement, or additional medical therapies including surgery or plasmapheresis - that take into account the risk/benefit of intervention must be quickly evaluated. The various preclinical designs and testing, surgical considerations, available surveillance techniques, and clinical consequences will be discussed using recent and historical case reports to highlight key points.

R1,666

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles16660
Mobicred@R156pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Mechanical cardiovascular assist devices must be properly designed to avoid damage to the blood they contact. The factors that affect the hemocompatibility of a cardiovascular assist device include three major non-physiological components - the material, fluid flow paths, and flow related stresses, - as well as the device interaction with the native vasculature. Furthermore, the interaction of the device with the blood is not static. Foreign surfaces activate blood components including platelets, leukocytes and the coagulation cascade. Thrombus formation on the surface of the device can alter the fluid dynamics in a manner that causes erythrocyte damage ranging from significant hemolysis to sub-lethal trauma that can take many days to weeks to develop into a significant clinical problem. This sub-lethal blood trauma is not easily detectable without special equipment, which is typically unavailable in routine clinical practice. Surveillance for blood damage is often sub-optimal in the clinical setting, but once clinically relevant hemolysis occurs, crucial decisions - device removal, replacement, or additional medical therapies including surgery or plasmapheresis - that take into account the risk/benefit of intervention must be quickly evaluated. The various preclinical designs and testing, surgical considerations, available surveillance techniques, and clinical consequences will be discussed using recent and historical case reports to highlight key points.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Momentum Press

Country of origin

United States

Release date

March 2015

Availability

Expected to ship within 12 - 17 working days

Authors

,

Dimensions

229 x 152 x 8mm (L x W x T)

Format

Hardcover - Sewn / Cloth over boards

Pages

64

ISBN-13

978-1-60650-783-4

Barcode

9781606507834

Categories

LSN

1-60650-783-4



Trending On Loot