Microdot - A 4-Bit Synchronous Microcontroller for Space Applications (Paperback)


Satellites have limited power budgets due to the amount of power collected by the satellites solar panels. The goal is to have a wide range of functionality, while running off a limited power source. Large microprocessors use large amounts of power to report back temperature and chemical sensor data to ground stations. By using small microcontrollers to perform the data collection and minimizing the usage of the larger microprocessors, the satellites will save power. A prototype design of the Microdot 4-bit microcontroller for space applications is presented. Requirements for the Microdot, such as microwatt power consumption and 23 different instructions, are based on research completed at AFRL/VSSE, Air Force Research Laboratory at Kirtland AFB, NM. A brief history of 4-bit microcontrollers and microprocessors, the synchronous design methodologies used, and space-based integrated circuit issues are presented. Various CAD tools were used, implementing both standard cell and full custom logic into the design. The prototype Microdot was fabricated at TSMC using MOSIS to validate the design implementation. Results from high fidelity simulations indicate the Microdot design has a power consumption of 16.3 mW operating at I kHz and consumes 22 mW when operating at the maximum operating clock frequency of 20 MHz. These results indicate that the Microdot can be implemented into space-based systems, while exhibiting low power usage.

R1,468

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles14680
Mobicred@R138pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Satellites have limited power budgets due to the amount of power collected by the satellites solar panels. The goal is to have a wide range of functionality, while running off a limited power source. Large microprocessors use large amounts of power to report back temperature and chemical sensor data to ground stations. By using small microcontrollers to perform the data collection and minimizing the usage of the larger microprocessors, the satellites will save power. A prototype design of the Microdot 4-bit microcontroller for space applications is presented. Requirements for the Microdot, such as microwatt power consumption and 23 different instructions, are based on research completed at AFRL/VSSE, Air Force Research Laboratory at Kirtland AFB, NM. A brief history of 4-bit microcontrollers and microprocessors, the synchronous design methodologies used, and space-based integrated circuit issues are presented. Various CAD tools were used, implementing both standard cell and full custom logic into the design. The prototype Microdot was fabricated at TSMC using MOSIS to validate the design implementation. Results from high fidelity simulations indicate the Microdot design has a power consumption of 16.3 mW operating at I kHz and consumes 22 mW when operating at the maximum operating clock frequency of 20 MHz. These results indicate that the Microdot can be implemented into space-based systems, while exhibiting low power usage.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Biblioscholar

Country of origin

United States

Release date

October 2012

Availability

Expected to ship within 10 - 15 working days

First published

October 2012

Authors

Dimensions

246 x 189 x 9mm (L x W x T)

Format

Paperback - Trade

Pages

174

ISBN-13

978-1-249-59318-8

Barcode

9781249593188

Categories

LSN

1-249-59318-2



Trending On Loot