Poisson Point Processes and Their Application to Markov Processes (Paperback, 1st ed. 2015)


An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Ito, and H. P. McKean, among others. In this book, Ito discussed a case of a general Markov process with state space S and a specified point a S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m< (called the stagnancy rate). The necessary and sufficient conditions for a pair k, m was obtained so that the correspondence is precisely described. For this, Ito used, as a fundamental tool, the notion of Poisson point processes formed of all excursions of the process on S \ {a}. This theory of Ito's of Poisson point processes of excursions is indeed a breakthrough. It has been expanded and applied to more general extension problems by many succeeding researchers. Thus we may say that this lecture note by Ito is really a memorial work in the extension problems of Markov processes. Especially in Chapter 1 of this note, a general theory of Poisson point processes is given that reminds us of Ito's beautiful and impressive lectures in his day.

R1,697

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles16970
Mobicred@R159pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Ito, and H. P. McKean, among others. In this book, Ito discussed a case of a general Markov process with state space S and a specified point a S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m< (called the stagnancy rate). The necessary and sufficient conditions for a pair k, m was obtained so that the correspondence is precisely described. For this, Ito used, as a fundamental tool, the notion of Poisson point processes formed of all excursions of the process on S \ {a}. This theory of Ito's of Poisson point processes of excursions is indeed a breakthrough. It has been expanded and applied to more general extension problems by many succeeding researchers. Thus we may say that this lecture note by Ito is really a memorial work in the extension problems of Markov processes. Especially in Chapter 1 of this note, a general theory of Poisson point processes is given that reminds us of Ito's beautiful and impressive lectures in his day.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer Verlag, Singapore

Country of origin

Singapore

Series

SpringerBriefs in Probability and Mathematical Statistics

Release date

2016

Availability

Expected to ship within 10 - 15 working days

First published

2015

Authors

Foreword by

,

Dimensions

235 x 155 x 3mm (L x W x T)

Format

Paperback

Pages

43

Edition

1st ed. 2015

ISBN-13

978-981-10-0271-7

Barcode

9789811002717

Categories

LSN

981-10-0271-1



Trending On Loot