Rigid Local Systems. (AM-139), Volume 139 (Paperback)


Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study "n"th order linear differential equations by studying the rank "n" local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1, infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard "n"th order generalizations of the hypergeometric function, n"F"n-1's, and the Pochhammer hypergeometric functions.

This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems.

Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the "l"-adic Fourier Transform.


R2,078

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles20780
Mobicred@R195pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study "n"th order linear differential equations by studying the rank "n" local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1, infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard "n"th order generalizations of the hypergeometric function, n"F"n-1's, and the Pochhammer hypergeometric functions.

This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems.

Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the "l"-adic Fourier Transform.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Princeton University Press

Country of origin

United States

Series

Annals of Mathematics Studies

Release date

December 1995

Availability

Expected to ship within 12 - 17 working days

First published

December 1995

Authors

Dimensions

254 x 197 x 12mm (L x W x T)

Format

Paperback - Trade

Pages

219

ISBN-13

978-0-691-01118-9

Barcode

9780691011189

Categories

LSN

0-691-01118-4



Trending On Loot