Scanning Probe Microscopy in Nanoscience and Nanotechnology (Hardcover, 2010 ed.)


Nature is the best example of a system functioning on the nanometer scale, wherethematerialsinvolved,energyconsumption,anddatahandlingareop- mized. Opening the doors to the nanoworld, the emergence of the scanning tunneling microscope in 1982 and the atomic force microscope in 1986 led to a shift of paradigmin the understanding and perception of matter at its most fundamentallevel. As aconsequence,newrevolutionaryconceptsstimulateda number of new technologies. The current volume Scanning Probe Methods in Nanoscience and Nanotechnology showsthat these methods arestill making a tremendous impact on many disciplines that range from fundamental physics andchemistry throughinformationtechnology,spintronics,quantumcomp- ing, and molecular electronics, all the way to life sciences. Indeed, over 6,000 AFM-related papers were published in 2008 alone, bringing the total to more than 70,000 since its invention, according to the web of science, and the STM has inspired a total of 20,000 papers. There are also more than 500 patents related to the various forms of scanning probe microscopes. Commerciali- tion of the technology started at the end of the 1980s, and approximately 12,000 commercial systems have been sold so far to customers in areas as diverse as fundamental research,the car industry, and even the fashion ind- try. There are also a signi?cant number of home-built systems in operation. Some60-80companiesareinvolvedinmanufacturingSPMandrelatedinst- ments. Indeed, not even the sky seems to be the limit for AFM technology. TheRosettamissiontocomet67Plaunchedbythe EuropeanSpaceAgencyin 2004 includes an AFM in its MIDAS (Micro-Imaging Dust Analysis System) instrument.

R7,706

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles77060
Mobicred@R722pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Nature is the best example of a system functioning on the nanometer scale, wherethematerialsinvolved,energyconsumption,anddatahandlingareop- mized. Opening the doors to the nanoworld, the emergence of the scanning tunneling microscope in 1982 and the atomic force microscope in 1986 led to a shift of paradigmin the understanding and perception of matter at its most fundamentallevel. As aconsequence,newrevolutionaryconceptsstimulateda number of new technologies. The current volume Scanning Probe Methods in Nanoscience and Nanotechnology showsthat these methods arestill making a tremendous impact on many disciplines that range from fundamental physics andchemistry throughinformationtechnology,spintronics,quantumcomp- ing, and molecular electronics, all the way to life sciences. Indeed, over 6,000 AFM-related papers were published in 2008 alone, bringing the total to more than 70,000 since its invention, according to the web of science, and the STM has inspired a total of 20,000 papers. There are also more than 500 patents related to the various forms of scanning probe microscopes. Commerciali- tion of the technology started at the end of the 1980s, and approximately 12,000 commercial systems have been sold so far to customers in areas as diverse as fundamental research,the car industry, and even the fashion ind- try. There are also a signi?cant number of home-built systems in operation. Some60-80companiesareinvolvedinmanufacturingSPMandrelatedinst- ments. Indeed, not even the sky seems to be the limit for AFM technology. TheRosettamissiontocomet67Plaunchedbythe EuropeanSpaceAgencyin 2004 includes an AFM in its MIDAS (Micro-Imaging Dust Analysis System) instrument.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag

Country of origin

Germany

Series

NanoScience and Technology

Release date

March 2010

Availability

Expected to ship within 12 - 17 working days

First published

2010

Editors

Dimensions

235 x 155 x 43mm (L x W x T)

Format

Hardcover

Pages

956

Edition

2010 ed.

ISBN-13

978-3-642-03534-0

Barcode

9783642035340

Categories

LSN

3-642-03534-5



Trending On Loot