Smoothed Finite Element Methods (Hardcover)

,

Generating a quality finite element mesh is difficult and often very time-consuming. Mesh-free methods operations can also be complicated and quite costly in terms of computational effort and resources. Developed by the authors and their colleagues, the smoothed finite element method (S-FEM) only requires a triangular/tetrahedral mesh to achieve more accurate results, a generally higher convergence rate in energy without increasing computational cost, and easier auto-meshing of the problem domain. Drawing on the authors extensive research results, Smoothed Finite Element Methods presents the theoretical framework and development of various S-FEM models.

After introducing background material, basic equations, and an abstracted version of the FEM, the book discusses the overall modeling procedure, fundamental theories, error assessment matters, and necessary building blocks to construct useful S-FEM models. It then focuses on several specific S-FEM models, including cell-based (CS-FEM), node-based (NS-FEM), edge-based (ES-FEM), face-based (FS-FEM), and a combination of FEM and NS-FEM (?FEM). These models are then applied to a wide range of physical problems in solid mechanics, fracture mechanics, viscoelastoplasticity, plates, piezoelectric structures, heat transfer, and structural acoustics.

Requiring no previous knowledge of FEM, this book shows how computational methods and numerical techniques like the S-FEM help in the design and analysis of advanced engineering systems in rapid and cost-effective ways since the modeling and simulation can be performed automatically in a virtual environment without physically building the system. Readers can easily apply the methods presented in the text to their own engineering problems for reliable and certified solutions.


R5,558

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles55580
Mobicred@R521pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Generating a quality finite element mesh is difficult and often very time-consuming. Mesh-free methods operations can also be complicated and quite costly in terms of computational effort and resources. Developed by the authors and their colleagues, the smoothed finite element method (S-FEM) only requires a triangular/tetrahedral mesh to achieve more accurate results, a generally higher convergence rate in energy without increasing computational cost, and easier auto-meshing of the problem domain. Drawing on the authors extensive research results, Smoothed Finite Element Methods presents the theoretical framework and development of various S-FEM models.

After introducing background material, basic equations, and an abstracted version of the FEM, the book discusses the overall modeling procedure, fundamental theories, error assessment matters, and necessary building blocks to construct useful S-FEM models. It then focuses on several specific S-FEM models, including cell-based (CS-FEM), node-based (NS-FEM), edge-based (ES-FEM), face-based (FS-FEM), and a combination of FEM and NS-FEM (?FEM). These models are then applied to a wide range of physical problems in solid mechanics, fracture mechanics, viscoelastoplasticity, plates, piezoelectric structures, heat transfer, and structural acoustics.

Requiring no previous knowledge of FEM, this book shows how computational methods and numerical techniques like the S-FEM help in the design and analysis of advanced engineering systems in rapid and cost-effective ways since the modeling and simulation can be performed automatically in a virtual environment without physically building the system. Readers can easily apply the methods presented in the text to their own engineering problems for reliable and certified solutions.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Crc Press

Country of origin

United States

Release date

June 2010

Availability

Expected to ship within 12 - 17 working days

First published

2010

Authors

,

Dimensions

229 x 152 x 40mm (L x W x T)

Format

Hardcover

Pages

692

ISBN-13

978-1-4398-2027-8

Barcode

9781439820278

Categories

LSN

1-4398-2027-9



Trending On Loot