Thermoelectric Materials - Advances and Applications (Hardcover)


Environmental and economic concerns have significantly spurred the search for novel, high-performance thermoelectric materials for energy conversion in small-scale power generation and refrigeration devices. This quest has been mainly fueled by the introduction of new designs and the synthesis of new materials. In fact, good thermoelectric materials must simultaneously exhibit extreme properties: they must have very low thermal conductivity values and both electrical conductivity and Seebeck coefficient high values as well. Since these transport coefficients are interrelated, the required task of optimization is a formidable one. Thus, thermoelectric materials provide a full-fledged example of interdisciplinary research connecting fields such as solid-state physics, materials science engineering, and structural chemistry and raise the need of gaining proper knowledge of the role played by the electronic structure in the thermal and electrical transport properties of solid matter. This book presents a detailed, updated introduction to the field of thermoelectric materials in a tutorial way, focusing on both basic notions and fundamental questions and illustrating the abstract concepts with suitable application examples. It discusses thermoelectric effects, the transport coefficients and their mutual relations, the efficiency of thermoelectric devices, and some notions on the characterization and related industry standards. It also reviews the two basic strategies for optimizing the thermoelectric performance of materials: the control of thermal conductivity and the power factor enhancement. It discusses structural complexity approach, focusing on complex enough lattice structures with heavy atoms in the unit-cell or nanostructured systems characterized by low-dimensional effects, and introducing different kinds of bulk materials of growing chemical and structural complexity. It also discusses the electronic structure engineering approach that focuses on obtaining a guiding principle, in terms of an electronic band structure tailoring process, and describes the role played by the electronic structure in the thermoelectric performance of different materials.

R4,298

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles42980
Mobicred@R403pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Environmental and economic concerns have significantly spurred the search for novel, high-performance thermoelectric materials for energy conversion in small-scale power generation and refrigeration devices. This quest has been mainly fueled by the introduction of new designs and the synthesis of new materials. In fact, good thermoelectric materials must simultaneously exhibit extreme properties: they must have very low thermal conductivity values and both electrical conductivity and Seebeck coefficient high values as well. Since these transport coefficients are interrelated, the required task of optimization is a formidable one. Thus, thermoelectric materials provide a full-fledged example of interdisciplinary research connecting fields such as solid-state physics, materials science engineering, and structural chemistry and raise the need of gaining proper knowledge of the role played by the electronic structure in the thermal and electrical transport properties of solid matter. This book presents a detailed, updated introduction to the field of thermoelectric materials in a tutorial way, focusing on both basic notions and fundamental questions and illustrating the abstract concepts with suitable application examples. It discusses thermoelectric effects, the transport coefficients and their mutual relations, the efficiency of thermoelectric devices, and some notions on the characterization and related industry standards. It also reviews the two basic strategies for optimizing the thermoelectric performance of materials: the control of thermal conductivity and the power factor enhancement. It discusses structural complexity approach, focusing on complex enough lattice structures with heavy atoms in the unit-cell or nanostructured systems characterized by low-dimensional effects, and introducing different kinds of bulk materials of growing chemical and structural complexity. It also discusses the electronic structure engineering approach that focuses on obtaining a guiding principle, in terms of an electronic band structure tailoring process, and describes the role played by the electronic structure in the thermoelectric performance of different materials.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Pan Stanford Publishing Pte Ltd

Country of origin

Singapore

Release date

May 2015

Availability

Expected to ship within 12 - 17 working days

First published

2015

Editors

Dimensions

229 x 152 x 23mm (L x W x T)

Format

Hardcover

Pages

364

ISBN-13

978-981-4463-52-2

Barcode

9789814463522

Categories

LSN

981-4463-52-3



Trending On Loot