Uncertainty Quantification Of Guided Wave Structural Health Monitoring For Aeronautical Composite Structures

, ,
This monograph presents a Guided Wave Structural Health Monitoring (GWSHM) system for aeronautical composite structures. Particular attention is paid to the development of a reliable and reproducible system with the capability to detect and localise barely visible impact damage (BVID) in Carbon-Fibre Reinforced Polymer (CFRP) structures.A novel sensor installation method that offers ease of application and replacement as well as excellent durability is introduced. Electromechanical Impedance (EMI) is also introduced to assess the durability of the sensor installation methods in simulated aircraft operational conditions, including thermal cycles, fatigue loading and hot-wet conditions.Damage characterisation using GWSHM is described and used to investigate damage in different CFRP structures. Key issues in guided wave-based damage identification are highlighted and addressed, including wave mode and frequency selection, the influence of dynamic load, the validity of simulated damage, and the sensitivity of guided waves to impact damage in different CFRP materials.The influence of temperature on guided wave propagation in anisotropic CFRP structures is described, and a novel baseline reconstruction approach for temperature compensation is presented. Finally, a multi-level hierarchical approach for the quantification of an ultrasonic GWSHM system is presented.

R2,408

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles24080
Mobicred@R226pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

This monograph presents a Guided Wave Structural Health Monitoring (GWSHM) system for aeronautical composite structures. Particular attention is paid to the development of a reliable and reproducible system with the capability to detect and localise barely visible impact damage (BVID) in Carbon-Fibre Reinforced Polymer (CFRP) structures.A novel sensor installation method that offers ease of application and replacement as well as excellent durability is introduced. Electromechanical Impedance (EMI) is also introduced to assess the durability of the sensor installation methods in simulated aircraft operational conditions, including thermal cycles, fatigue loading and hot-wet conditions.Damage characterisation using GWSHM is described and used to investigate damage in different CFRP structures. Key issues in guided wave-based damage identification are highlighted and addressed, including wave mode and frequency selection, the influence of dynamic load, the validity of simulated damage, and the sensitivity of guided waves to impact damage in different CFRP materials.The influence of temperature on guided wave propagation in anisotropic CFRP structures is described, and a novel baseline reconstruction approach for temperature compensation is presented. Finally, a multi-level hierarchical approach for the quantification of an ultrasonic GWSHM system is presented.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

World Scientific Europe Ltd

Country of origin

United Kingdom

Series

Computational and Experimental Methods in Structures, 14

Release date

October 2023

Availability

Expected to ship within 10 - 15 working days

Authors

, ,

Pages

200

ISBN-13

978-1-80061-469-7

Barcode

9781800614697

Categories

LSN

1-80061-469-1



Trending On Loot