Zinc Oxide - A Material for Micro- and Optoelectronic Applications - Proceedings of the NATO Advanced Research Workshop on Zinc Oxide as a Material for Micro- and Optoelectronic Applications, held in St. Petersburg, Russia, from 23 to 25 June 2004 (Paperback, 2005 ed.)


Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on "Zinc oxide as a material for micro- and optoelectronic applications," held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 - 40 meV and 60 - 70 meV.

R4,635

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles46350
Mobicred@R434pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on "Zinc oxide as a material for micro- and optoelectronic applications," held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 - 40 meV and 60 - 70 meV.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag New York

Country of origin

United States

Series

NATO Science Series II: Mathematics, Physics and Chemistry, 194

Release date

August 2005

Availability

Expected to ship within 10 - 15 working days

First published

2005

Editors

,

Dimensions

235 x 155 x 13mm (L x W x T)

Format

Paperback

Pages

240

Edition

2005 ed.

ISBN-13

978-1-4020-3474-9

Barcode

9781402034749

Categories

LSN

1-4020-3474-1



Trending On Loot